## ZAC Carrière des Amoureux – Garons (30)

## Etude énergétique



Construisons l'énergie des villes et territoires



## PROTÉGER LE PATRIMOINE DU GROUPE

Chaque salarié s'engage à traiter de façon responsable les informations qu'il détient dans le cadre de son travail et respecter les règles de sécurité et de confidentialité, en particulier concernant les données sensibles.

CHARTE ÉTHIQUE GROUPE





- Accessibilité <u>interne</u> limitée au Groupe EDF ou à certaines de ses composantes
- Accessibilité <u>restreinte</u> à des personnes ou fonctions ayant à en connaître
- Accessibilité <u>très limitée</u> (confidentiel)

## Optimisation énergétique de la ZAC Carrière des Amoureux

|              |   |    |    |    |   | # |    |
|--------------|---|----|----|----|---|---|----|
| 6            |   | n  | 7/ | n  |   | 1 | re |
| $\mathbf{O}$ | U | II | II | // | a | 1 |    |

| Rappel des objectifs de l'étude     |  |  |
|-------------------------------------|--|--|
| Solutions de confort thermique      |  |  |
| Surfaces et besoins                 |  |  |
| Ressources locales                  |  |  |
| Présentation des solutions étudiées |  |  |
| Bilan environnemental et financier  |  |  |



## Méthodologie

#### 1. Evaluation de la demande en énergie

Estimation des besoins futurs pour les différentes typologies (logements collectifs, individuels, équipements)

#### 2. Diagnostic du potentiel en énergie renouvelable

- Géothermie sur nappe, sur sondes
- Biomasse
- Solaire
- Aquathermie

#### 3. Proposition de scénarios d'approvisionnement

- Solutions mutualisées
- Solutions à l'échelle d'un bâtiment

#### 4. Comparaison des scénarios

Analyse multicritères

- technique
- environnementale
- économique (coût global)





## EVALUATION DE LA DEMANDE EN ENERGIE

## Rappel des caractéristiques du projet d'aménagement

|                       |       | Nombre de logements | Surface<br>m² |
|-----------------------|-------|---------------------|---------------|
| Maisons individuelles |       | 190                 | 19000         |
|                       | Lot A | 30                  | 1950          |
| Logomonto collectife  | Lot B | 48                  | 3120          |
| Logements collectifs  | Lot C | 30                  | 1950          |
|                       | Lot D | 24                  | 1560          |
| Résidences privées    |       | 17                  | 1105          |
| Groupe scolaire       |       |                     | 3500          |
| TOTAL                 |       | 339                 | 32185         |



## Hypothèses:

- 100m² pour une maison
- 65m² par logement collectif



## Besoins en énergie

#### Surfaces et besoins

|                          | Surfaces<br>(m²) | Puissance chauffage (kW) | Puissance<br>ECS <sup>(1)</sup><br>(kW) | Besoins chauffage (MWh/an) | Besoins<br>ECS <sup>(1)</sup><br>(MWh/an) |
|--------------------------|------------------|--------------------------|-----------------------------------------|----------------------------|-------------------------------------------|
| Maisons<br>Individuelles | 19 000           | 331                      | 198                                     | 156                        | 456                                       |
| Logements collectifs     | 8 720            | 180                      | 95                                      | 60                         | 209                                       |
| Résidences<br>privées    | 1 105            | 109                      | 58                                      | 36                         | 126                                       |
| Groupe<br>Scolaire       | 3 500            | 105                      | 42                                      | 20                         | 34                                        |
| Total                    | 32 325           |                          |                                         | 272                        | 825                                       |

(1): Eau Chaude Sanitaire





# LES RESSOURCES RENOUVELABLES

## Potentiel solaire

#### Ressources renouvelables et récupérables

Valorisation : Production d'électricité

► Estimation de la surface nécessaire pour couvrir la consommation d'électricité spécifique<sup>(1)</sup> d'une maison individuelle par des panneaux photovoltaïques installés et orientés plein sud, avec une inclinaison de 30° par rapport à l'horizontale :

| Technologie        | Amorphe | Polycristallin | Monocristallin |
|--------------------|---------|----------------|----------------|
| Surface de PV [m²] | 28,8    | 14,2           | 12,0           |

| Echelle  | Potentiel |
|----------|-----------|
| Bâtiment |           |



(1) Consommation électrique non substituable à une autre énergie (éclairage, ventilation, électroménager...) soit environ 2,1 MWh/an pour une maison individuelle de 100m²



## Potentiel solaire, logements collectifs

Ressources renouvelables et récupérables

Solution 1 : Préchauffage de l'eau chaude à l'aide de capteurs thermiques installés en toiture

- ► Installation de capteurs inclinés de 45° orientés vers le sud
- ► Taux de couverture déterminé en fonction d'un optimum entre production et productivité des panneaux

| Typologie           | Couverture des<br>besoins en eau<br>chaude | Productivité<br>des capteurs |
|---------------------|--------------------------------------------|------------------------------|
| Logement collectif  | 50 %                                       | 665 kWh/m²/an                |
| Maison individuelle | 55 %                                       | 550 Wh/m²/an                 |

► Nécessité d'un appoint pour couvrir l'ensemble des besoins

| Echelle  | Potentiel |
|----------|-----------|
| Bâtiment |           |

Valorisation: Eau Chaude Sanitaire





## Potentiel solaire, logements individuels

Ressources renouvelables et récupérables

Solution 2 : La chaleur récupérée par les capteurs alimente une pompe à chaleur

► Installation de capteurs horizontaux

| Couverture des besoins en eau chaude | Taux Enr |  |
|--------------------------------------|----------|--|
| 100 %                                | 65 %     |  |

► La pompe à chaleur permet de couvrir 100 % des besoins mais consomme de l'électricité

| Echelle  | Typologie          | Potentiel |
|----------|--------------------|-----------|
| Bâtiment | Logement collectif |           |





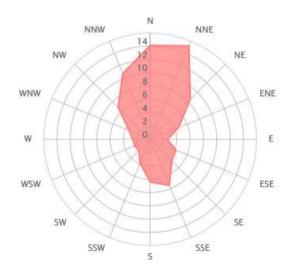


## Petit éolien

## Ressources renouvelables et récupérables

- ➤ Vitesse de vent moyenne de 4,8 m/s
- ► Potentiel faible pour recourir à du petit éolien
- Estimation de la production pour l'éolien :
  - ► Axe vertical avec une puissance de 300 W : 140 kWh/an
  - ► Axe horizontal:
    - ► Puissance de 600 W: 450 kWh/an
    - ► Puissance de 3 kW (diamètre de 4 m) : 3300 kWh/an
- ▶ Production faible en comparaison des besoins






| Echelle  | Potentiel |
|----------|-----------|
| Bâtiment |           |

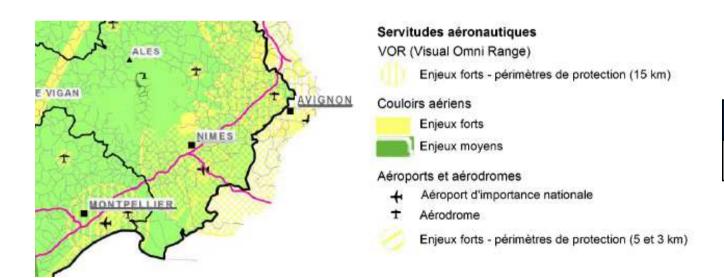
## Valorisation : Production d'électricité

Wind direction distribution in (%)

An






## Grand éolien

## Ressources renouvelables et récupérables

▶ Le site n'appartient pas à une Zone de Développement Eolien

Valorisation : Production d'électricité

- ► Situé à 1 km de l'aéroport de Nîmes Alès Camargue Cévennes
- ► La ZAC appartient au périmètre de protection autour de l'aéroport



| Echelle  | Potentiel |
|----------|-----------|
| Quartier |           |



## Géothermie

## Ressource des nappes d'eau souterraines

Valorisation: Chauffage et Eau Chaude Sanitaire

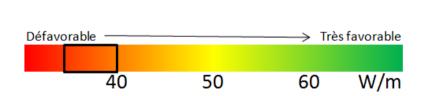
- ▶ Débit moyen mobilisable sur le site est estimée de 10 m³/h (zone jaune)
- ► A proximité de la ZAC, le débit moyen mobilisable est de 55 m³/h (zone verte)
- ► Pas d'informations disponibles concernant la profondeur de la nappe
- ► La ZAC est dans une zone de faible potentiel géothermique.

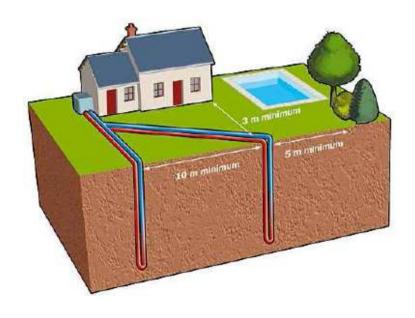
| Echelle              | Potentiel |
|----------------------|-----------|
| Bâtiment ou quartier |           |





## Géothermie


#### Ressource sur sonde


Valorisation : Chauffage et Eau Chaude Sanitaire

► Récupération de l'énergie du sous sol via des sondes

| Echelle  | Potentiel |
|----------|-----------|
| Bâtiment |           |

- ► Potentiel situé entre 35W/ml et 40W/ml
- ► La ZAC est dans une zone de faible potentiel géothermique sur sonde







## Les déchets

## Ressources renouvelables et récupérables

- ▶ 7,5 km séparent la ZAC de l'UIOM de Nîmes
- ▶ Distance trop importante pour une valorisation énergétique

Valorisation : Récupération de chaleur



| Echelle  | Potentiel |
|----------|-----------|
| Quartier |           |



## Les eaux usées

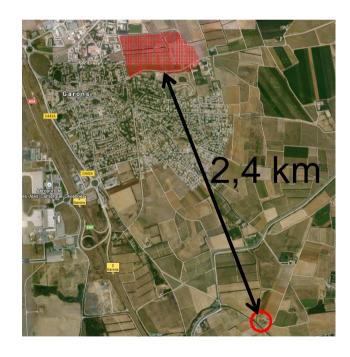
#### Ressources renouvelables et récupérables

#### ► Ressource 1 :

Récupération de chaleur sur les eaux de la station d'épuration :

- ► STEP de Garons, située à 2,4 km de la ZAC
- ▶ Débit de référence de 1400 m³/jour
- ▶ Distance trop importante pour une solution viable

| Echelle  | Potentiel |  |  |  |
|----------|-----------|--|--|--|
| Quartier |           |  |  |  |


#### ► Ressource 2 :

Récupération de chaleur sur les collecteurs d'assainissement :

- ► Cette technique nécessite des collecteurs d'un diamètre minimum de 700 mm
- ► Au vue de la programmation du projet, les collecteurs ne devraient avoir ni le diamètre ni le débit suffisant

| Echelle  | Potentiel |
|----------|-----------|
| Quartier |           |

Valorisation : Récupération de chaleur



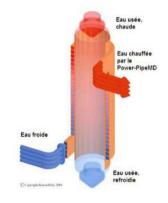


## Les eaux usées

## Ressources renouvelables et récupérables

Valorisation : Récupération de chaleur

#### ► Ressource 3 :


Récupération de chaleur sur les eaux grises locales (douches, baignoires, évacuations collectives des immeubles) pour préchauffer l'Eau Chaude Sanitaire en entrée.

#### Deux solutions existent :

- > Echangeur thermique direct :
  - ■Taux de couverture limité à environ 20%
- > PAC sur l'échangeur thermique :
  - •Investissement plus important (non rentable si inférieur à 30 logements)
  - ■Taux de couverture supérieur par rapport à l'échangeur direct



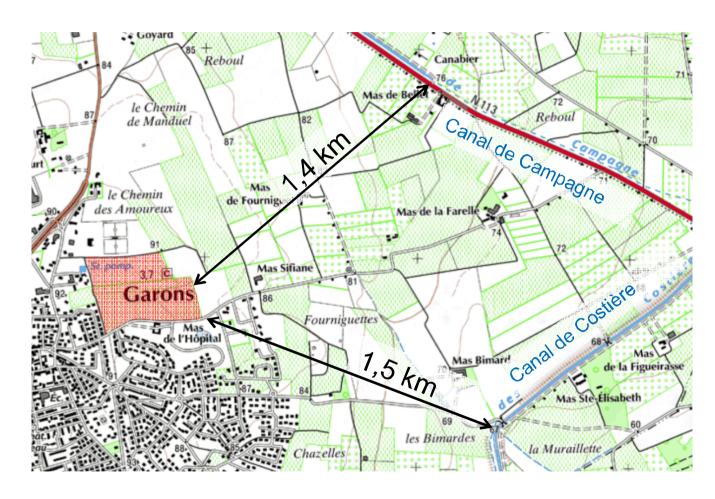
| Echelle  | Potentiel |  |  |
|----------|-----------|--|--|
| Bâtiment |           |  |  |





## Aquathermie

Ressources renouvelables et récupérables


Valorisation :
Production de chaleur ou
de froid

#### ► Ressource 1 :

Récupération d'énergie sur le canal de Campagne ou le canal de Costière

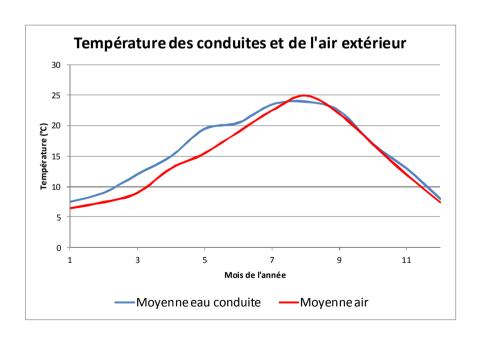
► Les canaux sont trop éloignés de la ZAC

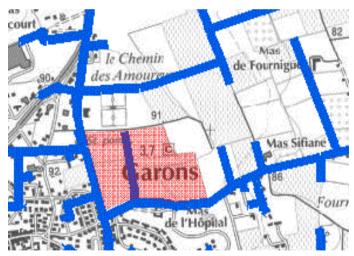
| Echelle  | Potentiel |
|----------|-----------|
| Quartier |           |





## Aquathermie


#### Ressources renouvelables et récupérables


Valorisation :
Production de chaleur ou
de froid

#### ► Ressource 2 :

Récupération d'énergie sur le réseau d'eau brute

- ► Conduite de diamètre 1m à proximité immédiate de la ZAC
- ► La température de l'eau du réseau est trop proche de celle de l'air
- ► Il n'y a pas d'intérêt à récupérer l'énergie de l'eau par rapport à celle de l'air
- ► La température hivernale de l'eau est trop faible et pourrait conduire à des problèmes de gel dans la conduite





| Echelle  | Potentiel |
|----------|-----------|
| Quartier |           |



## **Biomasse**

## Ressources renouvelables et récupérables

## Valorisation : Production de chaleur

► Taux boisement important en Languedoc-Roussillon avec 36% du territoire soit 1 Mha

#### Plaquettes forestières :

- ▶ 14 plateformes de production et de stockage de plaquettes forestières dans le Gard (19 en Lozère)
- ► La ZAC est située dans le rayon d'approvisionnement de grands projets tels que la centrale biomasse de Gardanne

#### **Granulés**

► Un site de production de granulés à partir de ressources locales est présent à Mende (150km)

| Echelle              | Potentiel |  |  |
|----------------------|-----------|--|--|
| Quartier ou bâtiment |           |  |  |







## Ressources disponibles pour le projet

| Usage       | Typologie                               | Technologie                                    | Atouts                                            | Contraintes                                                                                                   |  |
|-------------|-----------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
|             | MI et LC                                | Solaire thermique                              | Technologie mature                                | Taux de couverture EnR limité                                                                                 |  |
| ECS         | LC                                      | Récupération de chaleur<br>sur les eaux grises | Pérennité et proximité immédiate de la ressource  | Taux de couverture EnR limité,<br>obligation de mettre une autre<br>source EnR pour les maisons               |  |
|             |                                         | Chaudière granulés<br>Poêle à bois             | Production de granulés locale<br>Taux d'Enr élevé | Emprise foncière pour le silo<br>Livraisons                                                                   |  |
| Chaleur     | MI et LC                                | Géothermie sur sol                             | Pérennité de la ressource                         | Emprise foncière<br>Incertitude sur la ressource<br>disponible<br>Investissement élevé<br>Potentiel peu élevé |  |
|             | MI, LC et GS                            | Aérothermie                                    | Pérennité de la ressource<br>Climat favorable     | Impact acoustique potentiel                                                                                   |  |
| Electricité | Electricité MI, LC et GS Photovoltaïque |                                                | Technologie maîtrisée                             | Incertitude sur l'évolution des<br>tarifs et donc la rentabilité du<br>projet<br>Intégration en toiture       |  |

MI : Maison Individuelle LC : Logement collectif GS : Groupe Scolaire



22



# SCENARIOS DE DESSERTE ENERGETIQUE

SOLUTIONS MUTUALISÉES

## Solutions mutualisées

#### Deux scénarios de réseau de chaleur:

1. Desserte de l'ensemble de la ZAC :



Longueur : 2160 mètres linéaires Energie délivrée : 1100 MWh/an

Densité thermique : 0,51 MWh/(ml.an)

2. Desserte des bâtiments à forte densité énergétique :



Longueur : 360 mètres linéaires Energie délivrée : 325 MW h/an

Densité thermique : 0,90 MWh/(ml.an)

Densité thermique inférieure aux 1,5 MWh/(ml.an) nécessaires pour être éligible au fonds chaleur

→ pas de potentiel pour une solution mutualisée





# SCENARIOS DE DESSERTE ENERGETIQUE

**SOLUTIONS PAR BÂTIMENT** 

## Solutions thermiques: logements collectifs

Les solutions étudiées à partir des bilans des besoins et des ressources



| Solutions par bâtiment logements collectifs | Equipements                | Part d'énergie renouvelable |  |
|---------------------------------------------|----------------------------|-----------------------------|--|
| Solution 1                                  | Gaz + solaire thermique    | 42%                         |  |
| Solution 2                                  | PAC Air/Eau                | 66%                         |  |
| Solution 3                                  | PAC Air/Eau + Heliopac     | 71%                         |  |
| Solution 4                                  | Chaudière gaz + Powerpipe  | 16%                         |  |
| Solution 5                                  | Chaudière gaz + ECS thermo | 41%                         |  |
| Solution 6                                  | Chaudière à granulés       | 100%                        |  |



## Présentation des solutions de confort thermique identifiées

Pour un bâtiment composé de 18 logements

#### Solution 1 : Chaudière gaz + panneaux solaires thermiques

- 50 m² de panneaux solaires thermiques permettent de produire une partie de l'ECS à partir d'énergie renouvelable;
- Des toitures terrasses permettent d'orienter les panneaux à 45° pour optimiser leur production;
- Une chaudière gaz assure la production de chauffage et sert d'appoint pour la production d'ECS.

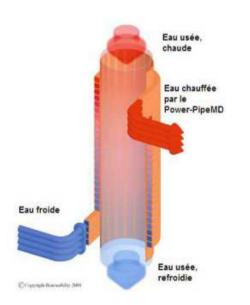




#### Solution 2 : PAC Air/Eau

- Une pompe à chaleur basse température alimente le circuit de chauffage ;
- Une pompe à chaleur haute température produit l'eau chaude sanitaire ;
- La pompes à chaleur couvre 100% des besoins de chauffage et d'ECS.




## Présentation des solutions de confort thermique identifiées

Pour un bâtiment composé de 18 logements

#### Solution 3: PAC Air/Eau + HelioPAC

- 45m² de panneaux solaires thermiques transmettent des calories à un ballon de stockage d'ECS en direct ou via une PAC;
- Une seconde pompe à chaleur récupère les calories présentent dans l'air pour les transmettre à un circuit de chauffage ;
- Cette solution permet une importante part d'énergie d'origine renouvelable.





#### Solution 4 : Chaudière gaz + powerpipe

- Le powerpipe, système de récupération d'énergie sur les eaux grises, permet de diminuer la consommation d'énergie pour la production d'ECS d'environ 20%;
- La chaudière gaz permet de couvrir l'ensemble des besoins thermiques pour l'ECS et le chauffage.



## Présentation des solutions de confort thermique identifiées

Pour un bâtiment composé de 18 logements

## Solution 5 : Chaudière gaz + ECS Thermodynamique centralisée

- La chaudière gaz fournie l'énergie nécessaire au chauffage
- Une pompe à chaleur air/eau produit l'eau chaude sanitaire





#### Solution 6 : Chaudière à granulés

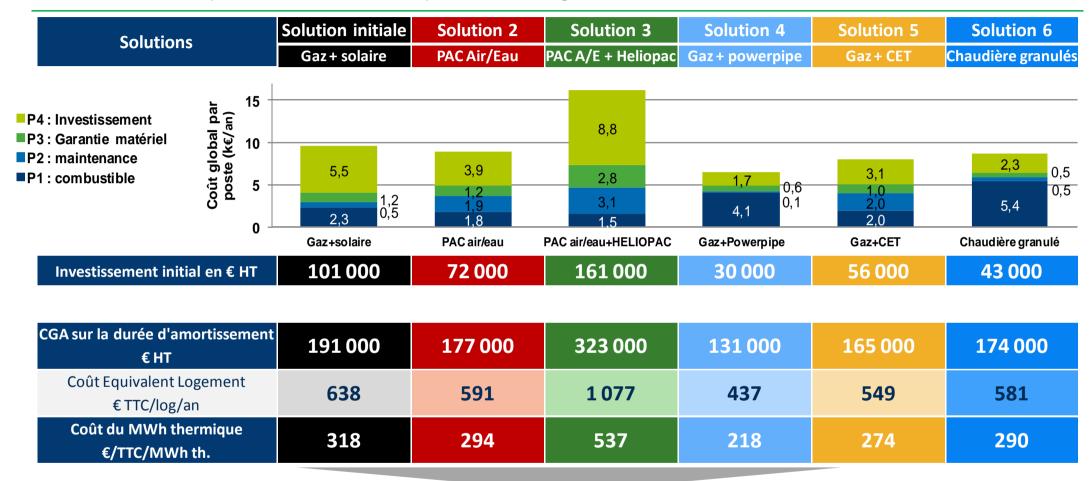
- La chaudière à granulés fournie l'ensemble des besoins thermiques
- Un silo est nécessaire pour stocker les granulés



## Bilan de l'étude logements collectifs

Bilan environnemental pour un bâtiment composé de 18 logements

| Solutions                                                 | Solution initiale | Solution 2  | Solution 3     | Solution 4      | Solution 5 | Solution 6         |
|-----------------------------------------------------------|-------------------|-------------|----------------|-----------------|------------|--------------------|
| Solutions                                                 | Gaz + solaire     | PAC Air/Eau | PAC + Heliopac | Gaz + Powerpipe | Gaz + CET  | Chaudière granulés |
| Energies primaires de la zone<br>kWh <sub>EP</sub> /m²/an | 29                | 37          | 32             | 53              | 40         | 69                 |
| Energies finales de la zone MWh/an                        | 30                | 17          | 14             | 57              | 23         | 80                 |
|                                                           |                   |             |                |                 |            |                    |
| CO <sub>2</sub> de la zone kg/m²/an                       | 5,9               | 0,72        | 0,62           | 11,2            | 2,23       | 1,36               |
| Etiquette CO₂ de la zone                                  | В                 | Α           | Α              | В               | Α          | Α                  |
| CO₂ total de la zone T/an                                 | 6,98              | 0,84        | 0,72           | 13,12           | 2,61       | 1,60               |
|                                                           |                   |             |                |                 |            |                    |
| Part d'énergie renouvelable %                             | 42%               | 66%         | 71%            | 16%             | 41%        | 100%               |



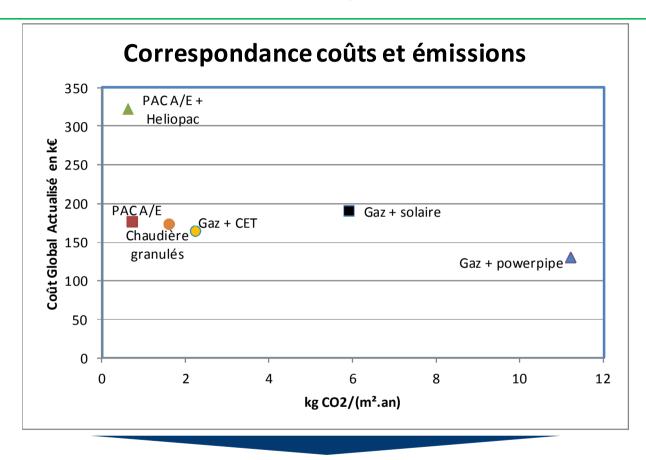

<sup>✓</sup> La solution PAC associé au système heliopac possède la part d'énergie renouvelable la plus importante

<sup>√</sup> La solution gaz + powerpipe émet le plus de CO₂

## Bilan de l'étude logements collectifs

Bilan financier pour un bâtiment composé de 18 logements




<sup>✓</sup> La solution gaz + powerpipe est la plus économique avec un coût de 437€ TTC/(log.an)

<sup>✓</sup> La PAC + Heliopac permet de diminuer les coûts liés à la consommation d'énergie grâce à une forte utilisation d'énergies renouvelables mais le surcoût à l'investissement reste important du fait du nombre de logements desservis



## Bilan de l'étude logements collectifs

Bilan global pour un bâtiment composé de 18 logements



- ✓ La PAC Air/Eau représente le meilleur compromis émissions de CO₂ et coût global actualisé
- √ Les solutions gaz sont plus émettrices de CO₂



## Solutions thermiques: maisons individuelles

Les solutions étudiées à partir des bilans des besoins et des ressources



| Solutions par bâtiment logements collectifs | Equipements            | Pourcentage d'énergie<br>renouvelable |
|---------------------------------------------|------------------------|---------------------------------------|
| Solution 1                                  | Gaz + CET              | 48%                                   |
| Solution 2                                  | PAC Air/Eau            | 67%                                   |
| Solution 3                                  | Poêle à granulés + CET | 73%                                   |
| Solution 4                                  | PAC sur sondes         | 73%                                   |
| Solution 5                                  | Gaz + CESI             | 41%                                   |



33

## Bilan de l'étude maisons individuelles

#### Bilan environnemental

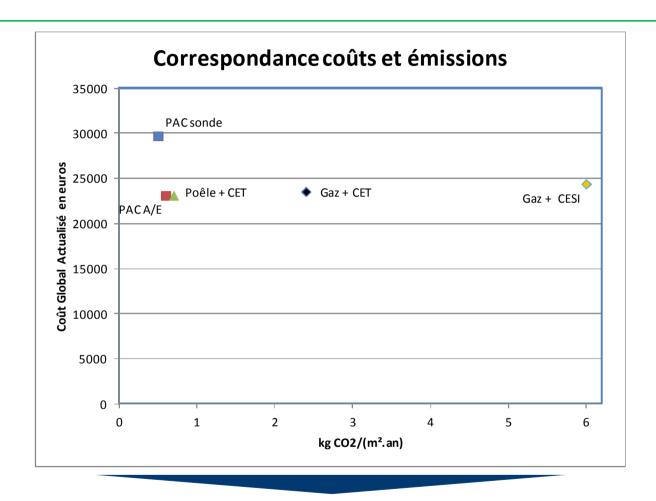
| Solutions                                              | Solution initiale | Solution 2  | Solution 3           | Solution 4    | Solution 5 |
|--------------------------------------------------------|-------------------|-------------|----------------------|---------------|------------|
| Solutions                                              | Gaz + CET         | PAC Air/Eau | Poêle granulés + CET | PAC sur sonde | Gaz + CESI |
| Energies primaires de la zone kWh <sub>EP</sub> /m²/an | 34,1              | 30,8        | 35,6                 | 25            | 29         |
| Energies finales de la zone MWh/an                     | 1,8               | 1,19        | 2,04                 | 0,98          | 2,62       |
|                                                        |                   |             |                      |               |            |
| CO <sub>2</sub> de la zone kg/m²/an                    | 2,4               | 0,6         | 0,7                  | 0,5           | 6,0        |
| Etiquette CO₂ de la zone                               | Α                 | Α           | Α                    | Α             | В          |
| CO <sub>2</sub> total de la zone kg/an                 | 240               | 60          | 70                   | 50            | 600        |
|                                                        |                   |             |                      |               |            |
| Part d'énergie renouvelable %                          | 48%               | 67%         | 73%                  | 73%           | 41%        |

- √ La solution PAC sur sonde est la moins émettrice en CO₂
- √ La solution gaz associée à un chauffe eau thermodynamique est la plus émettrice en CO₂



## Bilan de l'étude maisons individuelles

#### Bilan financier


|                                  |                                                                                |                                                          | Solution initiale                  | Solution 2                 | Solution 3                        | Solution 4                | Solution 5                          |
|----------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------|---------------------------|-------------------------------------|
|                                  | Solutions                                                                      |                                                          | Gaz + CET                          | PAC Air/Eau                | Poêle granulés +<br>CET           | PAC sur sondes            | Gaz + CET                           |
| Coût global par poste<br>(k€/an) | P4 : Investissement P3 : Garantie matériel P2 : maintenance P1 : combustible   | 1600<br>1400<br>1200<br>1000<br>800<br>600<br>400<br>200 | 570<br>186<br>75<br>346<br>Gaz+CET | 721  234  152  PAC air/eau | 678  157  205  Poêle granulés+CET | 1 067  243 125 PAC sondes | 652<br>212<br>75<br>281<br>Gaz+CESI |
|                                  | Investissement initial en k€                                                   | HT                                                       | 9 100                              | 11 500                     | 7 700                             | 17 800                    | 10 400                              |
|                                  | CGA sur la durée d'amortisse<br>€ HT<br>Coût du MWh thermique<br>€/TTC/MWh th. |                                                          | 23 550<br>365                      | 23 150<br>359              | 23 100<br>359                     | 29 700<br>461             | 24 400<br>379                       |

✓ La PAC sur sonde à un coût plus élevé que les autres solutions



## Bilan de l'étude maisons individuelles

Bilan global



✓ La PAC Air/Eau et le poêle à granulés associé à un CET sont les solutions les plus pertinentes



## Solutions thermiques: Groupe Scolaire

Les solutions étudiées à partir des bilans des besoins et des ressources

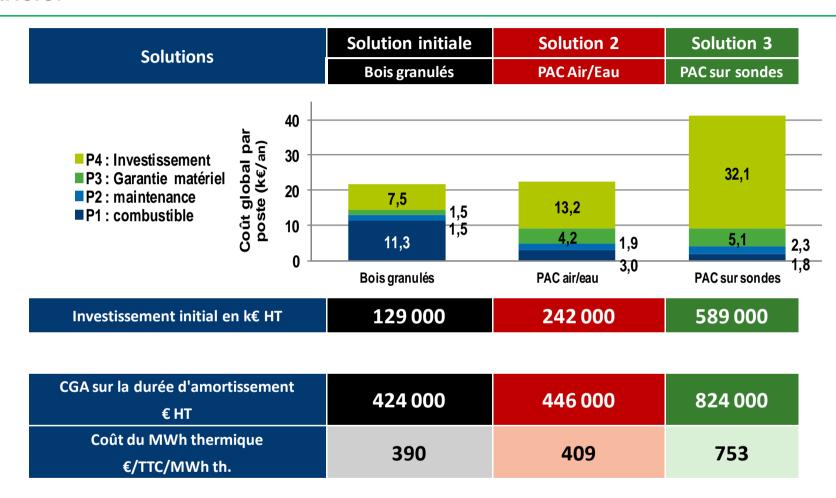


| Solutions par bâtiment logements collectifs | Equipements                 | Pourcentage d'énergie<br>renouvelable | Remarques                                                         |
|---------------------------------------------|-----------------------------|---------------------------------------|-------------------------------------------------------------------|
| Solution 1                                  | Chaudière bois granulés     | 100%                                  | Nécessite l'installation d'un silo de stockage                    |
| Solution 2                                  | PAC Air/Eau                 | 67%                                   |                                                                   |
| Solution 3                                  | PAC géothermique sur sondes | 73%                                   | Nécessite l'installation de 22 sondes de 100 mètres de profondeur |



## Bilan de l'étude Groupe Scolaire

#### Bilan environnemental

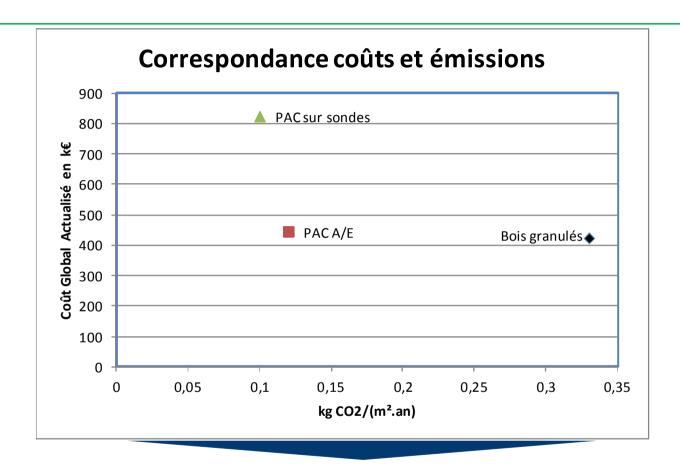

| Solutions                                              | Solution initiale | Solution 2  | Solution 3     |
|--------------------------------------------------------|-------------------|-------------|----------------|
| Solutions                                              | Bois granulés     | PAC Air/Eau | PAC sur sondes |
| Energies primaires de la zone kWh <sub>EP</sub> /m²/an | 16,8              | 6,0         | 4,9            |
| Energies finales de la zone MWh/an                     | 171               | 24          | 20             |
|                                                        |                   |             |                |
| CO <sub>2</sub> de la zone kg/m²/an                    | 0,33              | 0,12        | 0,10           |
| Etiquette CO₂ de la zone                               | Α                 | Α           | Α              |
| CO <sub>2</sub> total de la zone t/an                  | 3,43              | 1,19        | 0,98           |
|                                                        |                   |             |                |
| Part d'énergie renouvelable %                          | 100%              | 67%         | 73%            |

- ✓ La solution chaudière bois à granulés permet d'avoir une énergie 100% d'origine renouvelable
- √ La solution PAC sur sondes est la moins émettrice en CO₂



## Bilan de l'étude Groupe Scolaire

#### Bilan financier




- ✓ La PAC sur sondes nécessite un investissement 4,5 fois supérieur à la chaudière bois à granulés
- ✓ La solution chaudière bois à granulés possède le coût du MWh thermique le plus bas



## Bilan de l'étude Groupe Scolaire

Bilan global



✓ La solution PAC sur sondes est la moins émettrice en CO₂ mais son coût global actualisé est le double de la PAC Air/Eau

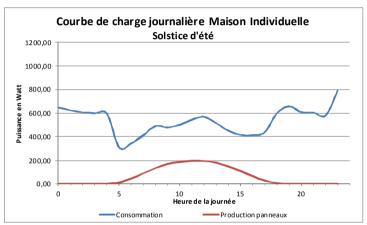


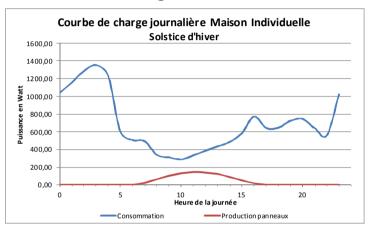


## LE PHOTOVOLTAÏQUE

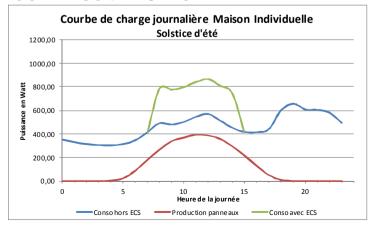
#### Cas de l'autoconsommation

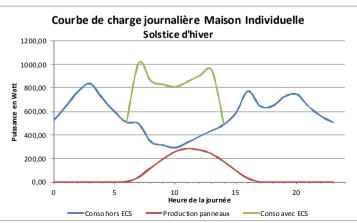
- ✓ Environ 20 % des besoins en électricité spécifique sont couverts
- ✓ Cette solution se traduit par la mise en place de 2 à 3 modules pour une maison individuelle de 100m²
- ✓ Le surcoût d'investissement est d'environ 2000€ HT pour un kit avec deux panneaux
- ✓ Le temps de retour sur investissement est important (≈ 20 ans)
- ✓ Solution innovante en cours d'expérimentation : utilisation de l'électricité photovoltaïque pour approvisionner un chauffe-eau thermodynamique




#### Cas de l'autoconsommation


#### Deux possibilités (exemple d'une maison individuelle) :


> Sous dimensionnement des PV pour rester sous la courbe de charge : 1,5m² soit 210Wc





➤ Dimensionnement permettant de faire du stockage thermique en programmant les charges ECS durant la journée : 3m² de PV soit 420Wc







#### Cas de la revente

- ✓ Inclinaison de 35°
- ✓ Les tarifs de rachat les plus intéressants concernent les puissances inférieures ou égales à 9 kWc
- ✓ Temps de retour sur investissement intéressant pour un tiers investisseur ou le futur habitant
- ✓ Incertitude : évolution du tarif Jusqu'au 30 juin 2015 : 26,17 cts/kWh

| Puissance (kWc)             | 5      | 9      |  |
|-----------------------------|--------|--------|--|
| Surface (m²)                | 35     | 65     |  |
| Production (kWh/an)         | 6 680  | 12 400 |  |
| Coût d'investissement (€HT) | 15 000 | 27 000 |  |
| Vente (€/an)                | 1 750  | 3 250  |  |
| Location de compteur (€/an) | 60     | 60     |  |
| Maintenance (€/an)          | 40     | 40     |  |
| Temps de retour brut        | 9      | 9      |  |



#### Résumé

| Options Photovoltaïque                                             | Atouts                                                                                                                                                                                                 | Contraintes                                                                                                                            |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Auto-consommation avec 2 à 3 modules                               | Pas d'obligation d'intégration                                                                                                                                                                         | <ul> <li>Couverture limitée aux besoins<br/>minimaux du bâtiment</li> <li>Bilan économique</li> </ul>                                  |  |
| Revente d'électricité pour une puissance comprise entre 3 et 9 kWc | Revenus annuels pour les futurs<br>propriétaires                                                                                                                                                       | <ul> <li>Intégration des panneaux en toiture</li> <li>Surcoût de construction</li> <li>Surcoût d'investissement</li> </ul>             |  |
| Tiers investissement pour une puissance comprise entre 5 et 9 kWc  | <ul> <li>Surcoût de construction limité</li> <li>Maintenance à la charge de<br/>l'opérateur (remplacement de<br/>l'onduleur)</li> <li>L'occupant devient propriétaire au<br/>bout de 20 ans</li> </ul> | <ul> <li>Mise en œuvre des panneaux à la charge des promoteurs</li> <li>Revenu limité pour l'occupant (1 à 4% des recettes)</li> </ul> |  |

